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Abstract1

Data integration to align cells across batches has become a cor-2

nerstone of single cell data analysis, critically affecting down-3

stream results. Yet, how much biological signal is erased dur-4

ing integration? Currently, there are no guidelines for when5

the biological differences between samples are separable from6

batch effects, and thus, data integration usually involve a lot7

of guesswork: Cells across batches should be aligned to be8

“appropriately” mixed, while preserving “main cell type clus-9

ters”. We show evidence that current paradigms for single cell10

data integration are unnecessarily aggressive, removing biolog-11

ically meaningful variation. To remedy this, we present a novel12

statistical model and computationally scalable algorithm, Cel-13

lANOVA, to recover biological signal that is lost during single14

cell data integration. CellANOVA utilizes a “pool-of-controls”15

design concept, applicable across diverse settings, to separate16

unwanted variation from biological variation of interest. When17

applied with existing integration methods, CellANOVA allows18

the recovery of subtle biological signals and corrects, to a large19

extent, the data distortion introduced by integration. Further,20

CellANOVA explicitly estimates cell- and gene-specific batch ef-21

fect terms which can be used to identify the cell types and path-22

ways exhibiting the largest batch variations, providing clarity23

as to which biological signals can be recovered. These concepts24

are illustrated on studies of diverse designs, where the biologi-25

cal signals that are recovered by CellANOVA are shown to be26

validated by orthogonal assays. In particular, we show that Cel-27

lANOVA is effective in the challenging case of single-cell and28

single-nuclei data integration, where the recovered biological29

signals are replicated in an independent study.30
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Introduction34

Over the last decade, single cell experiments have become35

routine in the biomedical field. Early efforts in single cell36

profiling focused on atlas building: Samples from one or37

a few replicates of a biological system are taken, with the38

goal of comprehensively mapping the cell types that make up39

the system. While such efforts continue, standardization and40

commercialization of single cell technologies have enabled41

large-cohort, population-scale studies to interrogate the cell42

types and cell type-level changes that underpin diseases.43

Batch effects (also called “unwanted variation”) are perva-44

sive in single cell studies, and the integration of cells across45

samples to remove batch effects is a critical step in any anal-46

ysis pipeline (1–3). Although sample multiplexing has been47

proposed as an experimental strategy to reduce sequencing-48

related batch effect (4–10), it does not control for technical49

biases introduced earlier during sample procuration and cell50

dissociation/sorting. In many situations, especially in clinical51

settings, it is difficult to “batch” the samples for library prepa-52

ration. It is also often unclear, in single cell studies, what type53

of samples can serve as the best controls, nor how to make use54

of control samples during data integration. Thus, all current55

integration paradigms treat each sample as its own batch, and56

for studies that include “control” or “baseline” samples, the57

current standard is to ignore this information during the in-58

tegration step and integrate cells across all samples in a way59

that is agnostic to experimental design.60

There has been enormous progress on the problem of sin-61

gle cell data integration (11–21), highlighted by compre-62

hensive reviews (21, 22). Despite this progress, key limi-63

tations remain in our current analysis paradigm, especially64

when faced with large-scale disease-focused single cell stud-65

ies. The work in this paper is motivated by the following66

unresolved challenges: 1) Disease-focused studies are usu-67

ally built on design principles such as case versus control co-68

horts and longitudinal sampling, yet neither current integra-69

tion methods nor their benchmarks make use of these design70

principles to separate batch effects from biological variation.71

2) We yet do not have a good grasp of how batch effects can72

vary across cell types and genes, and thus, current studies73

do not perform batch correction but rather, batch integration.74

Integration methods have tuning parameters that control the75

extent to which cells are aligned across samples to achieve76

uniformity, but without a clear understanding of how batch77

effects compare to biological variation, it is unclear how such78

parameters should be tuned. Different integration methods,79

and different parameter choices, often lead to different down-80

stream findings. Thus, current studies often take a black-box,81

trial-and-error approach to batch correction, compromising82
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the reproducibility of their results. 3) Existing benchmarks83

have focused mostly on preservation of differences between84

cell types, but not the preservation of subtle cell type-specific85

changes between samples (21, 22). In many studies, the sam-86

ples to be integrated are expected to differ biologically, and87

while the success of studies often hinge on the detection of88

subtle cell-type specific signals, current methods have been89

benchmarked mostly in the context of depletion/enrichment90

of major cell types.91

In this study, we show that meaningful biological variation92

is unnecessarily removed in single cell data integration, and93

present a novel statistical framework, CellANOVA, that har-94

nesses experimental design principles to explicitly quantify95

batch variation and recover the erased signals. Application96

of CellANOVA requires the choice of an existing integra-97

tion method, as well as the identification of one or multiple98

control-pools: A control-pool is a set of samples whereby99

variation beyond what is preserved by the existing integra-100

tion are not of interest to the study. The control-pool sam-101

ples are utilized to estimate a latent linear space that captures102

cell- and gene-specific unwanted batch variations. By using103

only samples in the control pool in the estimation of the batch104

variation space, CellANOVA can recover any variation in the105

non-control samples that lie outside this space. Importantly,106

CellANOVA produces a batch corrected gene expression ma-107

trix which can be used for gene- and pathway-level down-108

stream analyses. When applied with an existing integration,109

CellANOVA is fast and scalable to large single cell datasets.110

Results111

Defining Batch effects through construction of con-112

trol-pool.113

We start by describing what is meant by “batch effect” in114

single cell studies, with a rigorous definition given in the115

next section. In single cell studies, each sample is a “batch116

of cells”, and we use the terms “batch” and “sample” inter-117

changeably. It is unavoidable in high-plex experiments, re-118

gardless of protocol, for random technical variation to be in-119

troduced (23, 24). This technical variation, which can be spe-120

cific to each cell and each gene, is confounded with biological121

variation in the observed data. Our definition of batch effects122

include, but are not limited to, such sample- and cell-specific123

technical variation.124

The general use of the term “batch effect” has also included,125

sometimes explicitly (25) but often implicitly (26–28), bio-126

logical variations that are deemed ignorable within the scope127

of a study. For example, consider a hypothetical study where128

one cannot control the time of day of sample collection. Cir-129

cadian rhythms may affect our biological measurements, and130

if circadian effects are not of interest within the context of131

the study, then this biological variation can also be treated132

as a batch effect. In the statistical framework underlying133

CellANOVA, we make the vague concept of “batch effect”134

concrete through the construction of one or multiple control-135

pool(s), each consisting of a set of “control” or “baseline”136

samples that are not expected to differ from each other along137

the dimensions of interest to the study. We will include,138

as “batch effect”, any variation between the cells of these139

control-pool samples after conditioning on their latent cell140

state, which will be made precise in the next section. Thus, in141

addition to technical variation, batch effects can also include142

background biological variations within the control pool.143

Given an existing best-effort integration of all samples, Cel-144

lANOVA aims to recover any variation in the samples outside145

of the control-pool that may be erased during the integration.146

Variation among the samples in the control pool is used to147

learn the batch effect, and any variation that is orthogonal to148

the batch effect, as defined rigorously in the next section, can149

be recovered by CellANOVA.150

Within this framework, the construction of the control sample151

pool is critical. To demonstrate this construction, we describe152

4 studies of varying designs (Figure 1). The data from these153

studies will be used for illustration and benchmarking.154

Example 1: Case-control design (Figure 1a). In this study155

of type 1 diabetes (T1D) from (29), cultured pancre-156

atic islet cells from 11 healthy individuals, 5 indi-157

viduals with T1D, and 8 individuals with no clinical158

presentation of T1D but positive for beta-cell auto-159

antibodies (AAB+) were sequenced. This is a com-160

mon study design in clinical studies, where the goal161

is to identify disease-associated enrichment/depletion162

of cell types/states and cell-type specific differentially163

expressed genes. Clear batch effects are visible in the164

UMAP embedding of this data (Supplementary Figure165

1), potentially confounding with disease status. Since166

the primary goal is to make comparisons between dis-167

eased and healthy individuals and between disease sub-168

groups (i.e., T1D versus AAB+), we designate the 11169

healthy individuals as the control-pool.170

Example 2: Longitudinal design (Figure 1c). This is a study171

of 10 non-small cell lung cancer (NSCLC) patients172

undergoing two types of immunotherapy treatments,173

taken from (30). CD8 T cells sorted from peripheral174

blood were sequenced for each patient at four time175

points, including a baseline sample at time “0” right176

before the start of treatment. The patients differ by177

clinical outcome as well as by treatment regime. As de-178

scribed in the original study (30), eight of the patients179

received two cycles of pembrolizumab (aPD1), then180

itacitinib (JAKi for JAK inhibitor) concurrently with181

pembrolizumab for two cycles (Treatment 1). Then,182

pembrolizumab was continued until disease progres-183

sion. Imaging was performed after the first two cy-184

cles of pembrolizumab and then after itacitinib (at the185

end of cycle 4) to assess tumor response. As shown186

in Figure 1c, patients in Treatment 1 were categorized187

into three groups: those who exhibited an early ra-188

diographic response to pembrolizumab by the end of189

cycle 2, whom we label aPD1 for “anti-PD1 block-190

ade responsive”; those whose tumors failed to respond191

by the end of cycle 2 but responded at the end of cy-192

cle 4 with the addition of itacitinib, whom we label193
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Fig. 1: (Caption on next page.)
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Fig. 1: Examples of control-pool construction and integration results. (a) The case-control design in the type 1 diabetes (T1D) study involved
11 healthy individuals, 5 individuals with T1D, and 8 individuals with AAB+. The 11 healthy individuals are designated as the control pool.
(c) The longitudinal design in the immunotherapy trial dataset involved 10 lung cancer patients undergoing 2 types of immunotherapy
treatments sequenced at 4 time points. The 10 samples taken before treatment are designated as the control pool. (e) The irregular block
design in the mouse radiation experiment performed by 2 technician teams, with a strong technician effect confounded with time. To separate
time and treatment effects, we designate the 5 control samples as the control pool. (g) Case-control design of multimodal single-cell and
single-nuclei RNA sequencing for kidney atlas-building study, with large batch effects from different technology platforms. We designate
the 17 control samples (including samples from both scRNA-seq and snRNA-seq) as the control pool. UMAP visualizations of Harmony
integration, with and without CellANOVA signal recovery, for each dataset. (b: type 1 diabetes study; d: immunotherapy trial dataset; f:
mouse radiation experiment dataset; h: multimodal kidney dataset).

JAKi for “JAK-inhibitor responsive”, and those whose194

tumors remained refractory for the duration of treat-195

ment, whom we label NR for “non-responders”. With196

the scRNA-seq data, our goal is to examine how the197

CD8 T cells changed in these patients over the course198

of treatment, and how the T cell responses in these199

patients differ from those who were only treated with200

pembrolizumab (Treatment 2). (30). Although batch-201

effects seem less severe for this data (Supplementary202

Figure 2), as opposed to Example 1, the study aims203

to detect subtle changes in CD8 T cell expression that204

may require more finesse in integration. Since we are205

not interested in variation between the samples taken206

at baseline prior to treatment, we designate these 10207

samples, one from each individual, as the control-pool.208

Example 3: Irregular block design (Figure 1e). In this study209

on the effects of radiation on intestinal cells of mice,210

C56BL/6J mice were divided into a control group and211

a group that receives conventional radiation therapy.212

At days 2, 3.5, 10, and 20 post-irradiation, intestinal213

segments of two or more mice from each group were214

harvested and single cells were isolated and sequenced215

from the epithelial and lamina propria layers of the or-216

gan. The data analysis is complicated by the fact that217

two technician teams (whom we label CY and LL) per-218

formed experiments, and samples from the two teams219

are completely separated in the joint UMAP embed-220

ding (Supplementary Figure 3). The technician effect221

in this case is confounded with day: LL performed ex-222

periments on days 3.5 and 10, while CY performed ex-223

periments on day 2, 10 and 20. Control mice were in-224

cluded for most of the days, but not for LL on day 10.225

Since our goal is to quantify the time and treatment (ra-226

diation) effects on the cells, we designate the 5 control227

samples (2 from LL day 3.5, and 1 each from CY day228

2, 10, and 20) as the control-pool.229

Example 4: Case-control design with both single-cell and230

single-nuclei RNA sequencing (Figure 1g). In this231

study, Abedini et al. (31) collected kidney samples232

from N = 36 subjects, which were divided into two233

groups: (i) healthy controls (N = 17) and (ii) chronic234

kidney disease (N = 19), based on the estimated235

glomerular filtration rate and fibrosis. These samples236

underwent single-cell RNA sequencing (scRNA-seq)237

and/or single-nuclei RNA sequencing (snRNA-seq).238

The goal of this study is to construct an integrated atlas239

of healthy and fibrotic kidney to capture the changes240

associated with chronic kidney disease. However, the241

use of both single cell and single nuclei sequencing242

lead to significant batch effects (shown in Supplemen-243

tary Figure 4), and biological variations between the244

patients may also confound the biological variations of245

interest. Since the objective is to mitigate batch effects246

resulting from different protocols while preserving the247

differences between the control and disease samples,248

we chose the 17 control samples, which includes both249

scRNA-seq and snRNA-seq samples, as our control250

pool.251

In each of the above studies, the construction of the control-252

pool is a step of critical importance, as the control-pool sam-253

ples serve not only as a biological baseline for comparison,254

but also as a representative sampling of the sources of un-255

wanted variation which we will estimate using CellANOVA.256

Figure 1(h-j) previews the effects of CellANOVA when ap-257

plied on a Harmony integration of each of the three datasets.258

Results when applied with other integration methods are259

shown in Supplementary Figures 1, 2, and 3. Visual exami-260

nation reveals that the degree of inter-sample mixing varies261

substantially between integration methods, and in general,262

CellANOVA recovers a low-dimensional embedding that has263

more separation between disease states and treatment groups.264

Did CellANOVA effectively recover true and meaningful bi-265

ological signal while keeping batches appropriately mixed?266

We start with an overview of the CellANOVA model and al-267

gorithm, followed by a detailed examination of its signal re-268

covery capacity on these datasets.269

CellANOVA model and estimation procedure.270

Multi-sample single cell data comes in the form of m cell-by-271

feature expression matrices, X(1), . . . ,X(m), where X(i) ∈272

Rni×p records measurements on p features (e.g., RNA ex-273

pression levels) for ni cells in the ith sample. We as-274

sume, without loss of generality, that samples i = 1, . . . ,m0275

are designated as the control-pool (Figure 2a). The case276

of multiple control pools is given in Methods. After277

modality-appropriate pre-processing (see Methods), we as-278

sume the data follows the following cell state space analysis279

of variance (CellANOVA) model:280

X(i) = C(i)[M+B(i)V⊤ +T(i)W⊤]+Z(i). (1)

The model is shown in Figure 2b. Hereafter, for any matrix281

A, A⊤ stands for its transpose. In Eq. (1), C(i) ∈Rni×kc en-282

codes the unobserved state of each cell as a kC -dimensional283
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Fig. 2: (a) "Pool-of-controls” design of multi-sample single-cell data. (b) The CellANOVA Model. (c) The CellANOVA algorithm. Step
1: Estimate cell state-encoding via singular value decomposition of an existing integration across samples. Step 2: Estimate main effects
by regressing the original expression vectors on the cell state-encoding. Step 3: Estimate batch basis (V) using control-pool samples by
performing singular value decomposition of the effect space after removing main effects. Step 4: Remove batch effects for all samples by
projection into null space of V.
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vector, which we call the cell’s “state-encoding”. The cell284

state-encodings are multipled by a sum of three matrices:285

The main effect M, which captures average expression pat-286

terns across all samples in the dataset, the sample-specific287

batch effect B(i)V⊤, which captures unwanted variations288

that we wish to remove, and the sample specific signal matrix289

T(i)W⊤ which captures biologically meaningful variations290

that we wish to recover. Note that both the batch and sig-291

nal matrices are products of sample-specific score matrices292

(B(i) ∈ RkC×kB ,T(i) ∈ RkC×kB ) and cross-sample shared293

loading matrices (V ∈ RkB×p, W ∈ RkT ×p). The matrix V294

can be interpreted as a basis of the linear space that captures295

the state-encoding-specific batch variations across samples.296

Since V is a key quantity in the CellANOVA algorithm, we297

give it the name “batch-basis matrix”. In contrast, W can be298

interpreted as a basis of the linear space that captures the re-299

maining variation between samples after removing the batch300

variation. The last term, Zi, represents idiosyncratic noise301

that remains in the decomposition.302

The identifiability constraints of the model and the details of303

the estimation procedure are given in Methods. To appre-304

ciate how CellANOVA builds on existing integration meth-305

ods, we give an intuitive summary in Figure 2b. CellANOVA306

starts by applying an existing integration method to the en-307

tire dataset, to obtain an initial integrated data matrix across308

all samples. A singular value decomposition is performed309

on this integrated data matrix, and the cell state-encoding310

matrix (C) is estimated by the top kC left singular vectors,311

which we denote by Ĉ (step 1 in Figure 3c). Note that312

some biological differences between samples, such as enrich-313

ment/depletion of major cell types, are already preserved in314

C, as shown by extensive benchmarks of existing integration315

methods (21, 22). An embedding of C is what we commonly316

see in current integrated data embeddings.317

Next, CellANOVA regresses the original data matrix X(i) for318

each sample i on the estimated state-encoding of its cells,319

Ĉ(i), to obtain a matrix R(i) of dimension kC × p. An esti-320

mate of the main variation M is derived by averaging R(i)
321

across all samples (step 2 in Figure 2c). The batch-basis ma-322

trix V is estimated through quantifying the variation of R(i)
323

in only the control samples (i.e. centering R(i) within the324

control-pool, followed by an SVD of a row-stacking of the325

centered matrices). In this way, the estimated batch-basis ma-326

trix V̂ captures cell state-encoding specific variation between327

the control samples, post integration (step 3 of Figure 2c).328

Although the batch-basis matrix is shared across all samples,329

CellANOVA gives an explicit estimate of the batch effect for330

each gene in each cell, in the form of Ĉ(i)B̂(i)V̂⊤. Thus,331

the batch effect for each cell is allowed to depend on its332

state-encoding (through C(i)) as well as its sample-of-origin333

(through B(i)). With data-derived estimates Ĉ(i), M̂, and V̂334

as described above, we remove the batch effect from sample i335

simply by projecting each of its cells, after encoding-specific336

centering, into the null space of V̂ (step 4, Figure 2c),337

X̃(i) = Ĉ(i)M̂+(X(i) − Ĉ(i)M̂)(I− V̂V̂⊤). (2)

This projection gives a batch-corrected cell-by-feature matrix338

in the original data dimension, which can be used for down-339

stream analysis such as differential expression, gene set en-340

richment, and trajectory reconstruction. For analyses such as341

clustering, it is necessary to start with a low-dimensional em-342

bedding. One can apply standard dimension reduction pro-343

cedures to X̃(i). Note that such an embedding would differ344

from the embedding Ĉ(i) given by the initial integration, be-345

cause of the additional variation (X(i) − Ĉ(i)M̂)(I−V̂V̂⊤)346

that has been recovered.347

The CellANOVA model and estimation procedure also allow348

explicit delineation of the types of biological variation that349

can be recovered: to be separable from batch effects, the vari-350

ation needs to lie outside the linear span of the batch-basis351

V, and only the component of the variation that is orthogo-352

nal to V can be recovered. CellANOVA is conservative in353

the sense that it removes any variation that is contained in the354

batch variation space estimated using the control-pool sam-355

ples, which is, by design, to avoid introducing false positives.356

There may be scenarios where there are multiple sets of con-357

trol samples, where the variation between the samples within358

each control-pool are ignorable, but variation between sam-359

ples belonging to different control-pools are of interest and360

should be retained. The CellANOVA model and estimation361

procedure can be adapted to this case, with details given in362

Methods.363

Is the integrated data free from batch effects?364

CellANOVA uses only samples in the control-pool to esti-365

mate the batch-basis matrix V, which is then used to recover366

the biological variation between samples that might have367

been erased by existing integration methods. Hence, our first368

question is whether the variation recovered by CellANOVA369

is free of batch-effects. In other words, is the CellANOVA370

output as free of batch-effects, as compared to the original371

integration, especially for samples outside the control-pool372

that were not used in learning the batch-basis matrix? To an-373

swer this question, we devised the validation strategy shown374

in Figure 3a: For each dataset, we hold out one of the sam-375

ples in the original control-pool and apply CellANOVA with376

the control-pool limited to the remaining samples. Then, we377

examine whether the hold-out control sample is effectively378

integrated with the other control-pool samples. Ideally, the379

hold-out control sample should be well-integrated with the380

other control-pool samples, even if it were not used in the381

estimation of the batch-basis matrix. This hold-out analy-382

sis can be viewed as a robustness test: For CellANOVA to383

be effective in removing batch effects from samples outside384

the control pool, the control-pool needs to exhibit the diver-385

sity of batch variations that affect all samples. If the hold-386

out sample were not well-mixed with the other control-pool387

samples post-integration, then we would doubt that the batch-388

basis matrix estimated from the control-pool captures all of389

the unwanted variation in the study.390

We applied this benchmarking strategy on the type 1 diabetes,391

immunotherapy trial, and mouse radiation datasets shown in392

Figure 1, The results for the kidney disease study, which in-393

volves the integration of single cell and single nuclei data,394
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Fig. 3: (Caption on next page.)
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Fig. 3: (a) Experiment workflow for benchmarking CellANOVA against existing state-of-the-art methods in removing unwanted batch
variation, introducing global distortion (cell level) and gene-specific distortion (gene level). In each experiment run, we designated one
control sample as a "fake" treatment sample (hold-out set) and used the remaining control samples to estimate the batch variation basis. On
the hold-out sample, we performed DEG analysis using either uncorrected expression, or batch-corrected expression, between pre-defined
cell types, obtaining a multiple-testing adjusted p-value for each gene for each comparison. We compute the correlation between pre- and
post- expression for each cell. (b) Illustration of global distortion (left) and gene-specific distortion (right). Global distortion refers to the
degree to which the integrated data differs from the original data prior to integration. Gene-specific distortion refers to the preservation of
gene-level differences (or the lack thereof) between predefined cell groups. (c-e) Benchmark on type 1 diabetes dataset (c), immunotherapy
trial dataset (d) and mouse radiation experiment dataset(e). LISI scores of the fake treatment sample after batch correction in each hold-out
experiment are shown on the left. Correlations between pre- and post-CellANOVA correction gene expressions per cell are shown in the
middle. Comparisons of p-values obtained from DEG analysis with or without CellANOVA correction are on the right.

will be discussed separately in its own section. We com-395

pared CellANOVA (both Harmony- and Seurat-based) with396

Harmony (v0.1.1) (13), Seurat RPCA (v4.3.0) (32), LIGER397

(v1.0.0) (14, 33), Symphony (v0.1.1), and Seurat Reference398

Mapping (v4.3.0)(32). Harmony, Seurat, and LIGER were399

the three methods highlighted by (22). Symphony (34) is a400

reference mapping method that first constructs the reference401

atlas using Harmony and then maps queries into the same402

reference embedding. Seurat Reference Mapping (32) first403

constructs an integrated reference by applying the standard404

Seurat RPCA workflow. Then, it integrates the reference405

with the query data by correcting the query’s projected low-406

dimensional embeddings using the reference embedding as a407

template.408

As proposed by (13), we used local inverse Simpson’s index409

(LISI) with respect to sample labels to measure the mixing of410

the hold-out sample with the remaining samples. The LISI of411

a cell is defined as the effective number of batches, properly412

scaled, within its k-nearest neighbors. We used k = 30. A413

higher value of LISI indicates more uniform batch mixing.414

Figures 3c-e (left panel) and Supplementary Figure 8 show415

the distribution of LISI scores across cells of the hold-out416

sample after integration, with the hold-out sample iteratively417

set to each of the 5 control-pool samples in the mouse radia-418

tion study, the 11 control-pool samples in the type 1 diabetes419

study, and the 10 control-pool samples in the immunotherapy420

trial study. Corresponding UMAPs showing alignment of the421

hold-out sample with the remaining control-pool samples is422

shown in Supplementary Figures 5, 6, and 7. Despite the fact423

that CellANOVA preserves more inter-sample variation (Fig-424

ure 1h-j), the degree of mixing between the hold-out control425

sample and the rest of the control-pool is comparable to the426

original integration prior to signal recovery. This shows that,427

in recovering more signal, CellANOVA does not re-introduce428

unwanted variation.429

Does CellANOVA correct the distortion caused by in-430

tegration?431

The integration of cells across samples could inadvertently432

distort the data. Our goal is to remove batch effects while433

introducing minimal distortions, which is crucial to biolog-434

ical signal preservation and statistically sound downstream435

analyses. We consider two types of distortions: global and436

gene-specific (Figure 3b).437

“Global distortion” refers to the degree to which the inte-438

grated data differs from the original data prior to integra-439

tion. While we certainly expect the integrated and original440

data matrices to differ, our goal should be to remove all of441

the unwanted variation while maintaining maximal possible442

similarity to the original data. Excessive global distortion re-443

flects possible integration artifacts that could mislead down-444

stream analyses. To assess the severity of global distortion,445

we computed Pearson’s correlation coefficient between each446

cell’s gene expression vectors before and after integration for447

each of the three datasets. A higher correlation indicates448

milder global distortion. We compared CellANOVA (both449

Harmony- and Seurat-based) to Harmony (v0.1.1), Seurat450

RPCA (v4.3.0), and Liger (v1.0.0). Although Harmony only451

outputs a low-dimensional embedding, we were able to ex-452

tract a cell-by-feature matrix from the algorithm as described453

in Methods. Violin plots in Figure 3c-e (middle panel) and454

Supplementary Figures 9 (right panel) show that the cell-455

wise correlations between pre- and post-integration gene ex-456

pression vectors were significantly improved by CellANOVA457

on all three datasets, while maintaining the mixing between458

batches (Figure 3c,d,e). Prior to signal recovery, the corre-459

lations between integrated and original data consistently av-460

eraged below 0.5. After signal recovery, the correlations in-461

creased to consistently average above 0.9. Interpreted in the462

context of the results in the previous section (Figure 3), we463

can conclude that CellANOVA substantially reduce global464

distortion, preserving the highest similarity to the original465

data while effectively removing technical and biological un-466

wanted variation.467

In addition to global distortion, we also consider “gene-468

specific distortion”, which refers to the preservation of gene-469

level differences (or the lack thereof) between predefined cell470

groups. The concern here is that integration may artificially471

strengthen or weaken differential expression signals between472

cell groups. Referring to Figure 3b, we expect differential ex-473

pression signals in the observed data to be corrupted by batch474

effects. After integration, we would like to recover the true475

differentially expressed genes between cell populations, and476

avoid artificially inflating the significance of genes that are477

not truly differentially expressed.478

To assess gene-level distortions, we developed the novel479

strategy shown in Figure 3a. First, we hold out one sample480

and use the remaining samples to fit the M and V matrices481

in CellANOVA. On the hold-out sample, we identify differ-482

entially expressed genes between pre-defined cell types, ob-483

taining a multiple-testing adjusted p-value for each gene for484

each comparison. We then compute batch-corrected expres-485
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sion values for the hold-out sample using the fitted model486

and perform post-correction differential expression analysis487

between cell types, again obtaining adjusted p-values for488

each gene. Note that the pre- and post-correction p-values489

are computed using exactly the same sets of cells, all de-490

rived from the same sample (batch). Since they all come491

from the same batch, the pre-correction differences between492

these cells are not confounded by batch effects, and thus, the493

post-correction p-values should resemble their pre-correction494

counterparts. Figure 3c-e (right panel) plot the pre- and post-495

correction adjusted p-values against each other, with a high496

correlation indicating lower gene-wise distortions. For a fair497

comparison, we compared our approach against Harmony in-498

tegration with Symphony mapping, which, like CellANOVA,499

treats the hold-out sample as a query and the remaining sam-500

ples as the reference. In this way, the hold-out sample is501

not used in fitting the model. The scatter plots in Figure502

3c-e show that p-values obtained in the differential expres-503

sion analysis using CellANOVA-integrated data are highly504

correlated with those obtained prior to integration, indicat-505

ing minimal gene-level distortions. Importantly, this analysis506

shows that CellANOVA maintains valid p-values post inte-507

gration. In contrast, current integration methods artificially508

reduce the p-values, making it difficult to control type 1 error509

in downstream comparisons between cell types.510

Does CellANOVA recover true and meaningful biologi-511

cal differences between samples?512

CellANOVA is motivated by the desire to recover biologi-513

cally meaningful variation which may be erased during single514

cell data integration. We now explicitly evaluate the extent of515

biological signal recovery, focusing specifically on the recov-516

ery of meaningful differences between samples. Despite the517

growing knowledge of intra-sample cellular variation (e.g.,518

what are the cell types and the differences between them),519

studies usually have little a priori knowledge of what com-520

prises true between-sample variation beyond possibly a small521

set of positive controls. Thus, we employ two strategies for522

assessing the extent of recovery of true between-sample dif-523

ferences: (1) The leveraging of meaningful sample group-524

ings, and (2) the leveraging of cross-modality and cross-study525

replication. We first focus on strategy (1).526

In most single cell studies, samples are labeled in meaning-527

ful ways such as by disease status, treatment arm, or collec-528

tion time. We use “condition” as a generic term to refer to529

a grouping of samples based on a predefined label. Compar-530

isons between conditions are usually of primary interest to a531

study, as it is for the four studies in Figure 1: In the type-532

1 diabetes and kidney disease study, the goal is to compare533

between disease states; in the immunotherapy trial, the goal534

is to compare between different treatment-response groups,535

and within each group, across time; In the mouse irradia-536

tion study, the goal is to compare between the treatment and537

control arms, and within the treatment arm, across time. Fig-538

ure 4a shows a toy example of two conditions, each com-539

prising two samples. An overly aggressive integration might540

completely intermix all samples (left panel), erasing not only541

batch effects but also meaningful differences between condi-542

tions. On the other hand, an integration could fail to com-543

pletely remove batch effects (right panel), the presence of544

which would confuscate downstream comparisons between545

conditions. An effective integration should remove batch dif-546

ferences while preserving those differences between condi-547

tions that lie outside of the span of the batch-basis V (middle548

panel).549

To examine the extent of post-integration recovery of mean-550

ingful variation between samples, we devised the following551

strategy: First, for each cell, its thirty out-of-batch nearest552

neighbors are identified within the integrated cell embedding553

(Figure 4b). “Out-of-batch” means that when we search for554

a cell’s nearest neighbors, only cells outside of the cell’s own555

batch (i.e., sample) are considered. If the cell belongs to a556

cell state where there are differences between conditions, we557

expect these out-of-batch neighbors to be enriched for cells558

from the same condition. Thus, for each cell we can compute559

the proportion of its out-of-batch nearest neighbors that come560

from each condition. Ideally, this density should be highest561

for the condition that matches the condition of the center cell.562

Since the condition label is not used by CellANOVA in signal563

recovery, any same-condition enrichment (i.e. density shift-564

ing to the right) is proof that biological signals that separate565

the given condition from the rest has been recovered in the566

integration.567

As proof-of-principle, consider the mouse irradiation dataset568

(Figure 1e), which was generated by two different techni-569

cians, CY and LL. As shown in Supplementary Figure 3f, be-570

fore integration, we observed that technician difference was571

the main source of batch effects. CY sequenced samples from572

day 2, day 10, and day 20, whereas LL sequenced samples573

from day 3.5 and day 10. At each time point, samples se-574

quenced by CY included a set of control mice (denoted by C)575

and a set of irradiation-treated mice (denoted by SR), while576

LL included two sets of controls and four sets of SR samples577

at day 3.5, and no controls at day 10. Applying CellANOVA,578

we used the 5 control samples to estimate the batch-basis ma-579

trix and then removed batch effects for all samples. Figure 4c580

shows the nearest-neighbor composition for cells from LL’s581

day 10 SR sample. After CellANOVA integration, cells from582

LL’s day 10 SR sample are mostly surrounded by cells from583

CY’s day 10 SR sample, the sample to which it should be584

biologically most similar. This enrichment of cells from the585

same biological condition (i.e. the same number of days after586

treatment) rather than the same technician indicates preserva-587

tion of biological signals after integration. Importantly, Cel-588

lANOVA successfully matched LL’s day 10 SR sample to its589

correct counterpart among CY’s samples, even though there590

were no control samples from day 10 for LL. This indicates591

that, for estimation of the batch latent space, it is not neces-592

sary to include controls within every biological condition as593

long as the control-pool samples are sufficiently representa-594

tive for capturing potential batch effects.595

Now consider the type 1 diabetes and immunotherapy trial596

datasets, with the kidney disease dataset discussed in its own597

section later. In the type 1 diabetes (T1D) study (29), it was598
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Fig. 4: (Caption on next page.)
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Fig. 4: (a) Illustration of batch integration with signal preservation. An effective integration removes batch differences while preserving
differences between conditions (middle). An overly aggressive integration erases meaningful differences between conditions (left). An
ineffective integration fails to remove batch effects (right). (b) Illustration of out-of-batch nearest neighbors. We search for a cell’s nearest
neighbors, only cells outside of the cell’s own batch (i.e., sample) are considered. NN: nearest neighbor. (c) Nearest-neighbor composition for
cells from Leo’s day 10 SR sample, after integration by CellANOVA. The enrichment of cells from the same biological condition rather than
the same technician indicates effective batch removal with signal preservation. (d-f) Benchmarking signal preservation after batch correction
on three datasets using out-of-batch nearest neighbor proportion: (d) ductal cells in the T1D dataset, (e) all CD8 T cells from all patient
groups in the immunotherapy trial dataset, (f) non-naive CD8 T cells from the JAKi group in the immunotherapy trial dataset. Enrichment of
cells from the same treatment condition indicates the recovery of biological differences specific to the condition and cell type.

observed that a family of ductal cells separated into T1D-599

enriched and control/AAB-enriched subpopulations. Anal-600

yses conducted by (29) suggested that this separation was601

driven by true transcriptomic differences rather than techni-602

cal biases. To examine whether CellANOVA corroborates603

this finding, Figure 4d plots the neighborhood composition604

distributions of ductal cells from the Control, AAB, and T1D605

conditions, after integration by Harmony- or Seurat-based606

CellANOVA and initial integration by Harmony and Seurat,607

respectively. We observe that, after CellANOVA signal re-608

covery, strong differences in the ductal cells are observed be-609

tween the T1D, AAB, and control conditions, as the out-of-610

batch nearest neighbors of ductal cells are enriched for cells611

of the same condition, regardless of whether CellANOVA612

was applied to Harmony- or Seurat-based integrations. Fur-613

thermore, AAB neighbors were enriched in both AAB and614

T1D groups, while control cells were enriched in control615

and AAB groups. These findings suggest that AAB is an616

intermediate state between T1D samples and healthy sam-617

ples, which aligns with our current understanding of type 1618

diabetes. In contrast, without CellANOVA signal recovery,619

the differences in ductal cells between the three groups was620

mostly erased by integration as shown in Figure 4d.621

The immunotherapy trial dataset can be stratified by treat-622

memet: before treatment (baseline at cycle 1), after treatment623

1 (pembrolizumab + itacitinib), and after treatment 2 (pem-624

brolizumab only). Additionally, the samples collected after625

either treatment 1 or treatment 2 were sequenced at multi-626

ple time points, and thus can be stratified by time after treat-627

ment. In Figure 4e, we first grouped cells based on treatment628

and plotted the out-of-batch nearest neighbor composition629

for all CD8 T cells. After application of CellANOVA (ei-630

ther Harmony- or Seurat-based), the samples collected post631

treatment 2 are separated from baseline and from the sam-632

ples collected post treatment 1. In contrast, the differences633

between treatments were not visible from the initial integra-634

tion by Seurat or Harmony. We see similar trends when strati-635

fied by time: Figure 4f shows the out-of-batch nearest neigh-636

bor composition for non-naive CD8 T cells from the JAKi-637

responsive subjects, as defined in the original study. Mathews638

et al. (30) reported that one defining characteristic of JAKi639

responsive patients was that their tumors were still growing640

in cycle 2 but shrinks at cycle 4. Our analysis shows that, for641

these patients, CD8 T cells from cycle 2 are distinct after Cel-642

lANOVA recovery, while this difference is absent in the ini-643

tial integration. This is true whether the initial integration is644

by Seurat or Harmony. This cycle effect in the immunother-645

apy trial will be further compared to sample-matched flow646

cytometry in the next section.647

CellANOVA recovers subtle signals confirmed by648

matched flow cytometry.649

To further evaluate the extent of biological signal recovery650

and the effect of distortion correction on downstream anal-651

yses, we consider longitudinal changes in the NSCLC im-652

munotherapy trial scRNA-seq data (Figure 1c), and compare653

our findings to those made by flow cytometry for the same654

samples. We first considered the longitudinal molecular sig-655

nature reported by (30) for circulating CD8 T cells in this656

patient cohort: By measuring the proliferation marker Ki67657

in these same patients at the same time points, Mathew et658

al. (30) showed that the anti-PD1 responders have a statis-659

tically significant increase in Ki67+ non-naive CD8 T cells660

between cycle 1 and 2, whereas the patients in the JAKi661

group, who did not respond by cycle 3, lacked this initial662

increase in non-naive CD8 T cell proliferation (shown in Fig-663

ure 5a, lower panel). This is concordant with biological in-664

tuition, as PD1 blockade should reactivate anti-tumor CD8665

T cells and thus stimulate proliferation, at least in the aPD1666

responsive patients. To examine non-naive CD8 T cell pro-667

liferation in the scRNA-seq data, we applied CellANOVA,668

treating all samples from cycle 1 (before the start of pem-669

brolizumab) as the control-pool in the estimation of the batch670

variation basis, to integrate samples from all of the cycles671

(1, 2, 4, and 6). After integration, we performed differential672

expression analysis followed by pathway-enrichment analy-673

sis between consecutive sampling times (see Methods). We674

focused on the G2-M Checkpoint pathway in the Molecu-675

lar Signature Database (MSigDB) (35), a key pathway in676

cell division and a crucial component of the cell cycle. As677

shown in Figure 5a (upper panel), gene set enrichment anal-678

ysis (GSEA) on CellANOVA-integrated data shows signifi-679

cant enrichment for the G2-M Checkpoint pathway (p-value680

< 0.05 using Harmony-based CellANOVA, p-value < 0.1 us-681

ing Seurat-based CellANOVA) within the aPD1 group from682

cycle 1 to cycle 2. Within the aPD1 group, activity in this683

pathway dropped from cycle 2 to cycle 4, as indicated by a684

significant negative enrichment score (p-value < 0.01 using685

both Harmony- and Seurat- based CellANOVA). These re-686

sults corroborate the transient proliferative burst in non-naive687

CD8 T cells in aPD1 patients identified by flow cytometry.688

For patients in the JAKi group, CellANOVA found no signif-689

icant proliferation burst in non-naive T cells within the first 4690

cycles, which is also consistent with flow cytometry results.691

In contrast, patterns in the G2-M Checkpoint pathway after692

the initial integration by Harmony, Liger and Seurat were not693
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Fig. 5: (Caption on next page.)
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Fig. 5: Comparison of pathway enrichment analysis based on scRNA-seq versus flow cytometry of corresponding markers in NSCLC
immunotherapy trial data. (a) G2-M checkpoint pathway enrichment (scRNA-seq) versus Ki67 frequency (flow cytometry). A positive nor-
malized enrichment score (NES) from GSEA indicates higher pathway enrichment in the later time points. Both Ki67 and G2-M checkpoint
pathway activity measure cell proliferation. (b) Interferon alpha/gamma response pathway enrichment (scRNA-seq) versus ISG15 mean
fluorescence intensity (flow cytometry). (c) Cell-subtype-specific gene set analysis within each response group between cycle 2 and cycle 4
after Harmony-based CellANOVA integration. Top 5 up-regulated and down-regulated pathways in cycle 4 compared to cycle 2 are shown.

consistent with each other, nor with flow cytometry results,694

nor with biological intuition (Figure 5a, upper panel).695

Next, consider longitudinal changes of two key signalling696

pathways over the course of the treatment, namely the In-697

terferon Alpha Response pathway and the Interferon Gamma698

Response pathway. As described in the original study (30),699

we anticipate a higher enrichment of both pathways in cycle700

2, as compared to cycle 1, due to the chronic inflammation701

observed in cancer patients. Conversely, the addition of itaci-702

tinib, a JAK1 inhibitor which suppresses JAK1-dependent cy-703

tokine signaling like interferon, starting from cycle 3 should704

cause a decrease in the activities of both pathways in cycle705

4 as compared to cycle 2. Mathews et al. (30) detected706

this longitudinal change using flow cytometry data: Figure707

5b (lower panel), shows that the mean fluorescence intensity708

(MFI) for protein ISG15 (a direct readout from both inter-709

feron pathways) increased from cycle 1 to cycle 2, and then710

decreased from cycle 2 to cycle 4. Focusing on the aPD1711

and JAKi group, as shown in Figure 5b (upper and middle712

panel) and Supplementary Figure 10, the GSEA results us-713

ing CellANOVA-integrated data demonstrated the initial en-714

richment of both pathways in cycle 2, followed by their sup-715

pression in cycle 4. This is concordant with both the flow716

cytometry results and our knowledge of the effects that JAKi717

should have. In the initial design-blind integration by Har-718

mony, Liger, and Seurat, longitudinal changes in both inter-719

feron response pathways are not consistent with the flow cy-720

tometry data.721

Next, we used CellANOVA-integrated data to investigate the722

cell-type specific gene expression changes that may shed723

light on why the patients in the aPD1 and JAKi group showed724

tumor regression while those in the NR group did not. Focus-725

ing on cycle 2 and cycle 4, we performed gene set analysis726

on each subtype of non-naive CD8 T cells, including central727

memory, effector memory, and terminal effector cells, and728

identified the top 5 up-regulated and down-regulated path-729

ways in cycle 4 for each cell subtype per patient group. Our730

analysis revealed that the activity of interferon-related path-731

ways decreased from cycle 2 to cycle 4 in the aPD1 and JAKi732

groups, but not in the non-responders (Figure 5c, Supplemen-733

tary Figure 11). This suggests that JAKi did not take effect734

in the non-responders, which may contribute to continued in-735

flammation in these patients and worse outcomes. This drop736

in activity of interferon-related pathways is especially sig-737

nificant in the more differentiated cell subtypes (terminal ef-738

fector and effector memory CD8 T), but is also significant739

in the central memory cell CD8 T cells for patients in the740

JAKi responsive group. For the non-responders, interferon-741

related pathways actually have a significant increase in ac-742

tivity according to the CellANOVA recovery based on Seurat743

integration (Supplementary Figure 11). These findings con-744

firm the importance of temporal modulation of the interferon-745

stimulation response in immunotherapy.746

CellANOVA recovers replicable signals in single cell747

and single nuclei data integration.748

The integration of single-cell RNA sequencing (scRNA-seq)749

and single-nuclei RNA sequencing (snRNA-seq) data has750

been well appreciated to be challenging, as these two pro-751

tocols are measuring two different RNA populations within752

each cell. To overcome the gross differences between these753

two protocols, data integration often incurs substantial dis-754

tortion and signal loss. We consider data from a recent755

study (31) on the human kidney, with cells collected from756

17 healthy individuals and 19 individuals diagnosed with757

chronic kidney disease (CKD). The goal of this study was758

to construct a comprehensive atlas of cell types in the kid-759

ney, both in its healthy state as well as during CKD. Sam-760

ples from each individual were sequenced using scRNA-seq,761

snRNA-seq, or both protocols.762

We applied CellANOVA based on an initial Harmony inte-763

gration of the data. We chose to start with a Harmony-based764

integration because Harmony was able to integrate the data765

to achieve a better mixing of the single cell and single nu-766

clei samples within the major cell types of the kidney, as767

compared to other methods. However, the extent to which768

Harmony’s integration erased disease-relevant signals is not769

clear, and the objective of CellANOVA is to recover any770

such lost signals. We first verify that CellANOVA does not771

re-introduce batch effects while correcting the distortions in772

this challenging data integration task. Figure 6a (left panel)773

shows the distribution of iLISI scores across cells of each774

hold-out sample after integration, with the holdout sample775

iterating across the samples in the control pool as accord-776

ing to the scheme in Figure 3a. We see that CellANOVA777

achieves higher iLISI scores compared to Harmony, indicat-778

ing better batch mixing, despite the fact that it adds inter-779

sample variation back to the Harmony-integrated data. Fig-780

ure 6a (right panel) shows the distortion metrics described in781

Figure 3 on this data: CellANOVA corrects both global (cell-782

wise) and gene-level distortion introduced by Harmony inte-783

gration. Thus, we can conclude that CellANOVA improves784

batch mixing while correcting data distortions.785

Next, we evaluate the effectiveness of CellANOVA in recov-786

ering biological differences between the disease and normal787

samples. For an unbiased, global assessment, we quantified788

the overlap of the identified differences in the Abedini et al.789

data with those identified in the Kidney Precision Medicine790

Project (KPMP) by Lake et al.(36), which is an independent791

study of the same tissue and disease. From the KPMP study,792

we took only the scRNA-seq data, which consists of 20 nor-793

mal and 15 chronic kidney disease samples, and integrated794
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Fig. 6: (Caption on next page.)
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Fig. 6: Evaluation of CellANOVA in motimodal data integration. (a) Assessment of CellANOVA in batch removal and distortion correction.
Left panel: distribution of iLISI scores across cells of each hold-out sample based on unintegrated data, Harmony-integrated data, and
CellANOVA-integrated data. Top-right panel: comparisons of p-values obtained from DEG analysis with or without CellANOVA. Bottom-
right panel: correlations between pre- and post-CellANOVA correction gene expressions per cell. (b) Top ten upregulated pathways identified
within the disease condition for each specific cell type in the Abedini et al. data and the KPMP data, using batch-corrected expression data
generated by CellANOVA. (c) Density plot for the distribution of out-of-batch nearest neighbor proportion from disease or control conditions
around diseased cells. (d) Scatter plots of TNF-alpha signaling via NF-kB pathway activity score versus injured proximal tubule to normal
proximal tubule cell ratio for each Visium slice, with p-values calculated from linear regression. (e) Spatial distribution of spot-specific
injured proximal tubule to normal proximal tubule cell ratio (left) and spatial distribution of the activity score of TNF-alpha signaling via NF-
kB pathway (right) on Visium slice from sample HK_2770 (top) and HK_2844 (bottom), respectively. (f) Left panel: UMAP visualization of
CellANOVA-integrated PT and iPT cells, with cells colored by cell type, diffusion pseudotime from PAGA trajectory analysis, and pathway
activity score of TNF-alpha signaling via NF-kB. Right panel: scatter plot of diffusion pseudotime along the trajectory versus TNF-alpha
signaling via NF-kB pathway activity score.

them using Harmony followed by CellANOVA signal recov-795

ery. Since we only used scRNA-seq data from KPMP, we are796

confident that the signals thus identified are devoid of sin-797

gle cell to single nuclei integration artifacts, and thus sig-798

nals identified in the Abedini et al. (2023) data and repli-799

cated in this study are more likely to be real. We focused800

on the kidney cell types with high enough cell count: Proxi-801

mal tubule cells (PT), Injured proximal tubule cells (Injured-802

PT), cells of the cortical and medullary thick ascending loop803

of Henle (C-Tal and M-Tal), cells of the distal convoluted804

tubule (DCT), principal cells of collecting duct (PC), interca-805

lated cells, podocytes, connecting tubule (CNT), and fibrob-806

last. Within the disease condition, we computed the propor-807

tion of each cell’s out-of-batch nearest neighbors originating808

from either the disease or control samples, respectively, fol-809

lowing the scheme of Figure 4a,b. As shown in Figure 6c,810

CellANOVA substantially increased the enrichment of dis-811

eased cells among the out-of-batch nearest neighbors of dis-812

eased cells for most cell types. This can be seen in the neigh-813

borhood density plots as well as the total variation statistic814

(Supplementary Figure 12) This enrichment is replicated in815

the independent KPMP scRNA-seq data. In contrast, without816

CellANOVA signal recovery, for many cell types there is no817

detectable separation between the normal and disease sam-818

ples. These findings collectively suggest systemic changes in819

almost all of the major cell types in the kidney during CKD.820

To elucidate the cell-type specific genes and pathways in-821

volved in CKD, we next performed differential gene expres-822

sion analysis across the major kidney cell types, followed by823

pathway enrichment analysis. We used the batch-corrected824

expression data generated by CellANOVA to ensure that our825

analysis was devoid of any confounding batch effects. The826

results, before and after CellANOVA signal recovery, are pre-827

sented in Figure 6b and Supplementary Figure 13. Figure828

6b shows the top ten upregulated pathways identified within829

the disease condition for each specific cell type in the Abe-830

dini et al. data and the KPMP data. Here, again, we use831

the KPMP data to benchmark the replicability of the find-832

ings, with the replicated pathways highlighted in Figure 6b.833

CellANOVA enabled the detection of many cell-type specific834

disease-activated pathways, the majority of which are repli-835

cated in the KPMP data. In contrast, prior to CellANOVA836

signal recovery (Supplementary Figure 13), few significant837

disease-activated pathways were identified.838

Now, consider two specific pathways that showed the839

strongest cell type-specific activation in the Abedini et al.840

data: TNF-alpha signaling via NF-kB in proximal tubule841

cells, and epithelial mesenchymal transition in fibroblasts.842

Both signals are replicated in the KPMP data. Prior to Cel-843

lANOVA signal recovery, the TNF-alpha signaling via NF-844

kB signal was not identified in neither the Abedini et al. nor845

the KPMP data, and the epithelial mesenchymal transition846

signal was only identified in the Abedini et al. data, and847

not in the KPMP data. To follow up on these two cell-type848

specific pathway activation results, we analyzed the spatial849

transcriptomic (VISIUM) data from 5 CKD kidney slices in850

Abedini et al. Since the generation of spatial transcriptomic851

data does not involve cell dissociation, the spatial transcrip-852

tomic data should be devoid of the dissociation-related batch853

effects that plague single cell sequencing data. Thus, spa-854

tial localization of pathway activity to spots where a given855

cell type is enriched provides independent evidence that the856

pathway is active in the given cell type in CKD tissue. First,857

consider TNF-alpha signaling via NF-kB, which our analy-858

sis suggests should be activated in proximal tubule cells dur-859

ing injury. Indeed, for each of the five slices, the activity860

of TNF-alpha signaling via NF-kB localizes to regions of the861

tissue with a high injured proximal tubule to normal proximal862

tubule cell ratio, with p-value < 10−3 in all five slices (Fig-863

ure 6d). Figure 6e shows this colocalization pattern on two864

VISIUM slices with the most significant p values. To further865

investigate the enrichment of TNF-alpha signaling via NF-kB866

in regions exhibiting a high ratio of injured to normal proxi-867

mal tubule cells, we employed the CellANOVA output to per-868

form trajectory analysis and computed TNF-alpha signaling869

via NF-kB pathway activity score for both PT and iPT cells870

along this trajectory. As shown in Figure 6f, our analysis re-871

veals a significant positive correlation (p-value < 10−16) be-872

tween TNF-alpha signaling via NF-kB pathway activity and873

the transition from PT to iPT. As proximal tubule cells be-874

come injured, TNF-alpha signaling via NF-kB pathway is875

activated. Similarly, we expect the epithelial mesenchymal876

transition pathway to be activated in fibroblasts in disease877

tissue, and indeed, the activity of this pathway significantly878

colocalizes with fibroblasts in all of the five slices (Supple-879

mentary Figure 14).880

Benchmarks by simulation and cell type hold-out ex-881

periments.882
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To better understand what types of signals can be recovered883

by CellANOVA and the extent of signal recovery, we used884

cell-type hold out experiments and simulations for a system-885

atic comparison of methods.886

We first examine whether a condition-specific cell type that887

is only subtly distinguished from other shared cell types888

can be preserved during integration. While existing studies889

have extensively benchmarked the preservation of cell type890

enrichment/depletion signals (see, e.g. (22)), they focused891

mostly on cell types that are well separated in low dimen-892

sional embeddings were considered. To test on subtly distin-893

guished cell subtypes, we used the NSCLC immunotherapy894

trial dataset, for which the goal of the original study (30) was895

to identify condition-specific CD8 T cell subtypes. We will896

consider four CD8 T cell subtypes: naive, central memory,897

effector memory, and terminal effector cells. We took sam-898

ples from baseline time points and artificially divided them899

into a treatment group (2 samples) and a control group (re-900

maining 8 samples). Then we removed the terminal effec-901

tor CD8 T cells from the control samples so that this be-902

came a treatment-specific cell type. We used samples in the903

control group to estimate the batch variation basis and then904

corrected batch effects for both control and treatment sam-905

ples. As shown in Supplementary Figure 15a, CellANOVA906

successfully recovers the separation of the treatment-specific907

cell type (terminal effector CD8 T) in the UMAP space. On908

the contrary, the initial integration erases this subtle signal,909

mixing the terminal effector with effector memory CD8 T910

cells. We also used LISI scores to quantitatively evaluate911

the removal of batch effects versus the preservation of sig-912

nal, shown in Supplementary Figure 15b. On the left, for913

the control samples, CellANOVA achieves comparable LISI914

scores as existing methods, indicating that CellANOVA ef-915

fectively removes batch effects. On the right, the LISI scores916

for the treatment-specific terminal effector CD8 T cells are917

much lower after CellANOVA signal recovery, as compared918

to in the initial integration, indicating that CellANOVA re-919

covered this cell type. Since the LISI score measures the ef-920

fective number of batches in the neighborhood of each cell,921

and the terminal effector CD8 T cells are only present in two922

batches, the ideal LISI score of this treatment-specific cell923

type should be no larger than two.924

Next, consider a scenario where the treatment does not intro-925

duce new cell types but alters the expression level of genes926

in existing cell types. As shown in Supplementary Fig-927

ure 15c, we simulated a dataset with six cell types (CT1,928

CT2, ..., CD6), across five control batches and two treat-929

ment batches. We introduced differentially expressed genes930

by increasing the expression of a set of genes in CT6 cells931

in treatment batches, see Methods for details of simula-932

tion model. In Supplementary Figure 15c, UMAP plots933

demonstrate that only CellANOVA recovers the within-cell-934

type (CT6-specific) differences between control and treat-935

ment groups, while this subtle difference is lost in the initial936

integration. The heatmaps of the batch-corrected expressions937

of differentially expressed genes between control and treat-938

ment groups are shown in Supplementary Figure 16, which939

confirms that CellANOVA recovers such subtle cell-type spe-940

cific differential expression signals. To further evaluate the941

efficacy of CellANOVA, we used the batch-corrected expres-942

sions of CT6 cells to perform differential expression analy-943

sis between control and treatment groups, and the resulting944

ROC curves of different methods are shown in Supplemen-945

tary Figure 15e, where CellANOVA significantly improves946

the integration results of Seurat and Harmony.947

What comprises batch effects in single cell studies?948

The CellANOVA model contains explicit terms for sample-949

specific batch effects, namely C(i)B(i)V⊤ for the ith sam-950

ple (see Materials & Methods). This allows us to quantify951

the unwanted variation for each gene in each cell, thus en-952

abling the interrogation of how individual genes are affected953

by batch in a cell specific manner. We start by visualiz-954

ing the estimated batch effect terms of the Immunoterapy955

trial, type 1 diabetes, and mouse radiation datasets through956

UMAP embedding, which was produced by Harmony-based957

CellANOVA. See Supplementary Figure 17 for comparable958

results produced by Seurat-based CellANOVA. As expected,959

since each sample is a separate batch, the samples are well-960

separated from one another on the UMAPs. Importantly, we961

see that the major cell types for each dataset are also sepa-962

rated, to varying degrees, within each sample, indicating that963

batch effects are highly cell type specific.964

Many genes are not only strongly affected by batch, but the965

magnitude of its batch effect can vary significantly across966

cells. At the per-gene level, what underlies the cross-cell967

variation of its batch effect term? To start, we consider the968

contribution of library size, which is well appreciated to be a969

technical confounding factor in single cell studies. It is worth970

noting that we have already normalized by library size dur-971

ing the preprocessing step as we divided each cell’s raw UMI972

counts by their sum (i.e., we normalized by total counts per973

cell). Is this simple normalization enough? For each gene, we974

calculated Pearson’s correlation between its estimated batch975

effect term (columns of C(i)B(i)V⊤) and the cell library size976

within each cell type. As is shown in Supplementary Figure977

18, the correlations between library size and batch effect are,978

on the whole, low and centered around zero, except for ep-979

ithelial cells from the mouse radiation dataset. This shows980

that, in some cell types, the technical dependence on library981

size can not be completely removed by a simple normaliza-982

tion, but that the residual dependence can be captured and983

removed by CellANOVA.984

We also examined the dependence of batch effects on985

gene expression magnitude (after library size normalization),986

through Pearson’s correlation of each gene’s batch effect term987

and its standardized log-transformed expression (columns of988

X(i)). The distribution of correlations is plotted in Supple-989

mentary Figure 18. We found a minor positive correlation990

between log-transformed expression and batch effect. This991

shows that highly expressed genes have larger batch effects,992

even after log transformation.993

Next, we examined the pathways that are most affected by994

batch in each dataset, and asked if any are shared across stud-995

16 | bioRχiv Zhang et al. | CellANOVA

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2023. ; https://doi.org/10.1101/2023.05.05.539614doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.05.539614
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 7: (a) UMAP visualization of batch effects estimated by Harmony-based CellANOVA on three datasets, colored by batch and cell type.
(b) Top ten batch-affected pathways of each study based on batch-susceptibility score (BSS) with Harmony-based CellANOVA.

ies. Note that the three datasets being compared come from996

different tissues (pancreas, peripheral blood, and intestine),997

different laboratories, and two different species (mouse and998

human). CellANOVA estimates the batch-basis matrix V,999

each column of which can be interpreted as a latent “concept”1000

describing the unwanted variation. Each gene has a loading1001

for each latent concept, and the importance of each concept is1002

recorded by its corresponding singular value. We focused on1003

the k most important batch-associated concepts (k = 5), and1004

computed a weighted-sum of squared loadings across these1005

concepts for each gene, weighted by the corresponding sin-1006

gular values. Intuitively, this weighted sum measures the sus-1007

ceptibility of each gene to batch effects, and thus we call it1008

the batch-susceptibility score (BSS). For each study, we iden-1009

tified the batch-susceptible genes by selecting those with the1010

top 30% highest BSS. Then, we employed a hypergeometric1011

test to discover the enrichment of a priori defined pathways in1012

this batch-susceptible gene set, referring to Molecular Signa-1013

ture Database for pathway information. Figure 7b shows the1014

top ten batch-susceptible pathways of each study. Despite1015

differences in tissue, lab, and species, six out of ten path-1016

ways are shared across these three studies: (1) Myc Targets1017

V1; (2) Oxidative Phosphorylation; (3) mTORC1 Signaling;1018

(4) DNA Repair; (5) Myc Targets V2; and (6) Unfolded Pro-1019

tein Response. Supplementary Figure 17 shows that the same1020

pathways could also be found if Seurat, instead of Harmony,1021

is used together with CellANOVA, corroborating these find-1022

ings.1023

This sharing of batch-susceptible pathways among datasets1024

reflect the fact that, despite differences in tissue and labora-1025

tory environment, common technical factors affect single cell1026

sequencing experiments. Subtle variations in tissue process-1027

ing and handling introduce variations in the level of oxidative1028

and endoplasmic reticulum stress to the cells in different sam-1029

ples, which is why oxydative phosphorylation and unfolded1030

protein response are common sources of high batch variation1031

(37). Oxidative and endoplasmic reticulum (ER) stress lead1032

to coordinated responses: Misfolded proteins can induce re-1033

active oxygen species production, and oxidative stress can1034

disturb the redox environment within the ER thereby fur-1035

ther disrupting protein folding (38). Importantly, oxidative1036

stress inhibits mTORC1, an important suppressor of mito-1037

chondrial oxidative stress and a key player in cellular stress1038

response and energy metabolism in many cell types (39, 40).1039

Thus, it is not surprising that mTORC1 signalling is a com-1040

mon batch-variable pathway, along with oxidative phospho-1041
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rylation and unfolded protein response. The ubiquitous high1042

batch variation of the Myc target genes reflect varying lev-1043

els of stress-induced cell cycle arrest and cell death across1044

samples (41, 42).1045

Discussion1046

In the analysis of single cell data, integration of cells across1047

samples to remove unwanted variation plays a critical role.1048

Recent advances in the field have brought forth many inte-1049

gration algorithms, each aiming to align cells “belonging to1050

the same state” across multiple samples. However, when the1051

samples are expected to be biologically distinct, there has not1052

been a scientific way to address the question of how aggres-1053

sively should the cells be aligned. Each integration algorithm1054

has parameter(s) to control the extent of alignment and the1055

resulting uniformity of the samples, but the tuning of such1056

parameters has been left to guesswork. While the stated goal1057

of integration is to remove “batch effect”, batch effects have1058

been challenging to explicitly quantify in the single cell con-1059

text, and there were no explicit guidelines as to when un-1060

wanted batch variation can be separated from biologically1061

meaningful variation.1062

We developed a new model and analysis framework to ex-1063

plicitly quantify batch effects in single cell data in a cell-state1064

and sample specific way, thus allowing the recovery of vari-1065

ation that is orthogonal to batch effects in single cell inte-1066

gration. This model requires the existence of a set (or sets)1067

of control samples. The inclusion of “control” or “baseline”1068

samples is routine in single cell studies, but such samples are1069

currently used only after integration, e.g., as a baseline for1070

quantifying cell composition changes. By using control sam-1071

ples during the integration step, CellANOVA harnesses good1072

experimental design: control samples should be included not1073

only as biological baselines for comparison but also as repre-1074

sentations of the range and diversity of unwanted variation in1075

the experiment. Careful construction of control-pools allows1076

more complete batch effect removal and more sensitive and1077

trustworthy recovery of biological signals.1078

Through comprehensive benchmarks, we showed that when1079

CellANOVA is applied in conjunction with existing state-1080

of-the-art integration methods, it accomplishes three objec-1081

tives. First, CellANOVA corrects data distortion introduced1082

by integration, in that it removes batch effects while main-1083

taining maximum similarity to the original data matrix. Sec-1084

ond, CellANOVA recovers valid p-values for cross-cell type1085

comparisons, in that it corrects the artificial inflation of cross-1086

cell type differences introduced by current integration meth-1087

ods. Third, CellANOVA allows for the recovery of sub-1088

tle cell-state-specific differences between samples that were1089

erased during integration. This was shown using both a pri-1090

ori knowledge (in the form of condition labels of the sam-1091

ples) and validation by flow cytometry and by replication in1092

data from an independent study. In our analyses, we applied1093

CellANOVA on initial integrations computed using Harmony1094

and Seurat, but users can choose any integration method. It is1095

important that the initial integration gives a good mixing of1096

the batches, even if that incurs a heavy loss of signal. This is1097

because CellANOVA can recover the biological signal that is1098

lost, but usually can not remove batch effects that are persist1099

after the initial integration.1100

The CellANOVA model also gives us explicit intuitions on1101

what comprises batch effects in single cell data, and what1102

types of biological signals can be recovered from an integra-1103

tion. Through the batch susceptibility score, we found that1104

a set of shared core pathways have the highest susceptibil-1105

ity to batch effects across data from different labs, tissues,1106

and species. Only the component of biological signals that1107

are orthogonal to the batch latent space can be recovered,1108

and thus we expect that variation in these pathways, if they1109

were not already preserved in the original integration and thus1110

hard-coded in the cell-state encoding, to be refractory to Cel-1111

lANOVA signal recovery.1112

CellANOVA is a lightweight algorithm that adds only a few1113

minutes to current integration pipelines. The benchmarking1114

procedures we employed in Figure 3 and Figure 4 can be per-1115

formed on any dataset. They have also been implemented in1116

the CellANOVA package and we believe that they should be1117

routinely used for visualization and diagnostics. A common1118

question should be “do we have a big enough control-pool”.1119

This can be answered by doing the hold-out experiment on1120

the current control-pool, as described in Figure 3a, to see if1121

the hold-out sample is sufficiently well integrated with the re-1122

maining control-pool samples. If not, more control samples1123

should be collected to get a more complete representation of1124

the unwanted variation in the data.1125

Materials & Methods1126

Data preprocessing.1127

All scRNA-seq datasets are transformed as follows before1128

integration: Let Y(i)
cg be the raw count for gene g in cell c1129

in sample i. We define Ỹ(i)
cg = log(1 + 10000 × Y(i)

cg /S
(i)
c ),1130

where S
(i)
c =

∑
g Y(i)

cg is the library size of cell c in sample i.1131

Then, the data is centered for each gene across all cells to ob-1132

tain X(i)
cg = Ỹ(i)

cg − n−1 ∑n
c=1 Ỹ(i)

cg . Then, X(i)
cg is the value1133

in the CellANOVA model Eq. (1). This is also the starting1134

value for the integration by Seurat, Harmony, and Symphony.1135

For Liger, we followed the pipeline suggested in the software1136

tutorial (https://github.com/welch-lab/liger)1137

(33) and performed library size normalization, highly vari-1138

able gene selection (p = 3000), and scaling without center-1139

ing.1140

Identifiability constraints of CellANOVA model.1141

The model in Eq. (1) is non-identifiable unless some addi-1142

tional constraint is imposed. To ensure identifiability, we1143

make the following assumptions:1144

(i) V, W, and C = [(C(1))⊤, . . . ,(C(m))⊤]⊤ ∈ Rn×kC1145

has orthonormal columns where n =
∑m

i=1 ni;1146

(ii)
∑m

i=1 B(i) = 0;1147

(iii)
∑m

i=1 T(i) = 0;1148
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(iv) V⊤W = 0.1149

Given cell state C(i), the terms in brackets in Eq. (1) were in-1150

spired by the (two-way) ANOVA model (43, 44) where tech-1151

nical variation due to batch effect and biological variation due1152

to treatment condition explains cell-state-specific variations1153

in an additive way.1154

Details of model fitting.1155

We fit the model in Eq. (1) by successively carrying out the1156

following three steps.1157

Estimation of cell states. In the first step, we estimate cell1158

states across all m datasets. To this end, let1159

X = [(X(1))⊤, . . . ,(X(m))⊤]⊤ ∈ Rn×p

be the stacked data matrix. For a user-selected number of1160

principal components (PCs) kC > 0, we apply Harmony (13)1161

on X with kC PCs to align across dataset labels and use the1162

kC leading left singular vectors of the Harmony output, col-1163

lected as the columns of1164

Ĉ = [(Ĉ(1))⊤, . . . ,(Ĉ(m))⊤]⊤ ∈ Rn×kC , (3)

as our estimator of the cell state coding matrix C. We could1165

replace Harmony with other comparable batch effect correc-1166

tion methods, such as Seurat (32).1167

Estimation of batch effects and main effects. For i =1168

1, . . . ,m, we regress X(i) on Ĉ(i) to obtain regression co-1169

efficient matrix R(i) via ordinary least squares (OLS). Here1170

and after, for two full rank matrices A ∈Rℓ×q and B ∈Rℓ×s
1171

with ℓ > s > q, the OLS regression coefficient matrix from1172

regressing A on B is given by (B⊤B)−1A ∈ Rs×q .1173

Now define the within-control average effect1174

M̂0 = 1
m0

m0∑
i=1

R(i), (4)

which is the average of regression coefficient matrices in the1175

control/baseline datasets. Define1176

E(i)
0 = R(i) −M̂0 ∈ RkC×p (5)

for i ∈ [m0] and1177

E0 = [(E(1)
0 )⊤, . . . ,(E(m0)

0 )⊤]⊤ ∈ R(m0kC)×p. (6)

With a user-defined positive integer kB , we estimate V by the1178

kB leading right singular vectors of E0, collected as columns1179

of V̂ ∈ Rp×kB .1180

Now we estimate the main effect M with1181

M̂ = 1
m

m∑
i=1

R(i). (7)

For i ∈ [m], define

F(i) = R(i) −M̂ ∈ RkC×p

and further define our estimator for B(i) as1182

B̂(i) = F(i)V̂V̂⊤ ∈ RkC×kB . (8)

When kB > kC , (B̂(i))⊤ is the unique OLS regression coef-1183

ficient matrix obtained from regressing (F(i))⊤ ∈ Rp×kC on1184

V̂ ∈ Rp×kB .1185

Estimation of treatment effects. For i ∈ [m], let F̄(i) =
F(i)(I− V̂V̂⊤) and further define

F̄ = [(F̄(1))⊤, . . . ,(F̄(m))⊤]⊤ ∈ R(mkC)×p.

For a user-defined positive integer kT , we estimate W in1186

Eq. (1) with Ŵ ∈Rp×kT whose columns collect the kT lead-1187

ing right singular vectors of F̄. Furthermore, for each i, we1188

estimate T(i) with1189

T̂(i) = F(i)ŴŴ⊤ ∈ RkC×kT . (9)

When kT > kC , (T̂(i))⊤ is the unique OLS regression coef-1190

ficient matrix obtained from regressing (F(i))⊤ ∈ Rp×kC on1191

Ŵ ∈ Rp×kT .1192

By the definitions of Ĉ, M̂, V̂, Ŵ, {B̂(i) : i ∈ [m]}, and1193

{T̂(i) : i ∈ [m]}, the four identifiability assumptions are sat-1194

isfied by these estimators.1195

Batch-effect-corrected datasets for exploratory data analy-1196

sis. In many exploratory scenarios, one may only be inter-1197

ested in removing batch effects while preserving as many bio-1198

logical signals as possible. To this end, the idiosyncratic term1199

Z(i) may contain valuable signal of interest. When this is the1200

case, the only undesirable term in Eq. (1) is B(i)V⊤. To1201

this end, the formula Eq. (2) gives the batch-effect-corrected1202

version of the ith dataset. Effectively, for each dataset, af-1203

ter adjustment with respect to its cell state compositions, we1204

project its difference from the global mean onto the orthogo-1205

nal complement of the subspace spanned by columns of the1206

estimated batch basis matrix. The sum of the batch-effect-1207

corrected difference and the cell-state adjusted global mean1208

gives the batch-effect-corrected dataset that can be treated as1209

a raw dataset in downstream analysis, such as DEG analysis1210

and gene set enrichment analysis.1211

Extension of the basic CellANOVA model to multiple1212

control-pools.1213

Sometimes the desired control/baseline group may consist1214

of datasets collected under multiple conditions. For exam-1215

ple, it may contain scRNA-seq data collected on a number1216

of healthy controls and on all diseased subjects prior to treat-1217

ment. In this case, assume there are q disjoint groups of con-1218

trols, denoted by C1, . . . ,Cq , under different conditions such1219

that the union C1 ∪·· ·∪Cq = [m0] covers all control datasets.1220

For any set C, let |C| denote its cardinality. For j = 1, . . . , q,1221

define M̂Cj
= |Cj |−1 ∑

i∈Cj
R(i). Let 1E denote the indica-1222

tor of an event E. For each i ∈ [m0], replace the definition of1223

E(i)
0 in Eq. (5) with1224

E(i)
0 = R(i) −

q∑
j=1

1i∈Cj
M̂Cj

. (10)
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In other words, after cell state composition adjustment, we re-1225

place the contrast of a control dataset against the mean over1226

all control Eq. (4) with the contrast of it against its group1227

mean, as we do not want to contaminate estimated batch1228

effects with differences among means of different control1229

groups. Then, we define E0 as in Eq. (6) with the above1230

new definition of each E(i)
0 . Finally, we estimate V with V̂1231

which collects the leading kB right singular vectors of E0 as1232

its columns.1233

Benchmarking the effectiveness of batch effect re-1234

moval and distortion correction (Figure 3).1235

Details of methods execution for hold-out analysis. For1236

this analysis, we focused on the control-pool samples within1237

each dataset and employed a hold-out strategy for methods1238

benchmarking. In each experimental run, we designated1239

one control sample as a pseudo-treatment sample (holdout1240

set) and used the remaining control samples as the pseudo-1241

control-pool for CellANOVA. To ensure comparability, the1242

quality control and low-quality-cell removal steps were stan-1243

dardized across all methods for each dataset. We ran the1244

suggested workflow of each method to perform data inte-1245

gration. For CellANOVA, we only used designated con-1246

trol samples to estimate the batch variation basis V in the1247

second step of model fitting, while all samples (including1248

the held out pseudo-treatment sample) were used to esti-1249

mate the main effect M, treatment-effect variation basis W,1250

and cell states C. For Harmony, we integrated all sam-1251

ples together using the harmony_integrate function1252

in the Python package Scanpy (v1.8.1) with default pa-1253

rameters, ignoring the treatment-control design. For Seu-1254

rat V4, we followed the reference-based integration work-1255

flow, specifying the samples in the training set as the ref-1256

erence and the pseudo-treatment sample as the query. The1257

FindIntegrationAnchors function with reduction1258

= "rpca" and the IntegrateData function from the1259

R package Seurat (v4.3.0) were used to integrate pseudo-1260

control-pool samples and the pseudo-treatment sample. For1261

Symphony, we set the training control samples as the Sym-1262

phony reference and the fake treatment sample as the query1263

object. Following the suggested pipeline, we used the1264

buildReferenceFromHarmonyObj and mapQuery1265

functions from the R package symphony (v0.1.1) with1266

default parameters to construct the reference and to inte-1267

grate the query with the reference, respectively. For Liger,1268

we followed their workflow for integrating multiple single-1269

cell RNA-seq datasets and used the optimizeALS and1270

quantile_norm functions from the R package rliger1271

(v1.0.0) with default parameters to perform joint matrix fac-1272

torization and quantile normalization.1273

Evaluation metrics. We employed the following evalua-1274

tion metrics in Figure 3:1275

1. iLISI. To assess local batch mixing of the integrated1276

gene expression data, we used LISI integration (iL-1277

ISI) proposed by Korsunsky et al. (13). It measures1278

the effective number of batches in the neighborhood1279

of a cell. Higher iLISI values indicate better mix-1280

ing of cells from different samples or batches in the1281

integrated space. We used function pca in Python1282

package Scanpy (v1.8.1) to perform principal com-1283

ponent analysis on the batch-corrected data and then1284

used function compute_lisi in Python package1285

harmonypy (v0.0.6) to compute iLISI scores. For1286

comparison, all methods in benchmarking utilized the1287

first 15 components to compute iLISI, with all other1288

parameters at their default values.1289

2. Gene expression correlation. To assess the severity of1290

global distortion, we computed the Pearson’s correla-1291

tion coefficient between each cell’s gene expression1292

vector before and after correction. A higher correla-1293

tion indicates milder global distortion. The function1294

corrcoef in Python package NumPy (v1.20.3) was1295

used to compute Pearson’s correlation.1296

3. Predicted p-value for differential expression gene test.1297

To evaluate gene signal distortion in the batch cor-1298

rection process, we employed a p-value comparison1299

method inspired by the train-test-split concept com-1300

monly used in statistics and machine learning. In step1301

1, we divided samples in the control-pool into two1302

sets: a training set used for model fitting, and a test1303

set for evaluating model performance. Without loss of1304

generality, let X(m0) denote the held-out testing sam-1305

ple, and X(1), . . . ,X(m0−1) represent the remaining1306

m0 −1 training samples. In step 2, using training sam-1307

ples, we followed the CellANOVA pipeline and fitted1308

the model. Specifically, we estimated cell state ma-1309

trices Ĉ(1), . . . ,Ĉ(m0−1), main effect M̂, and batch-1310

induced modes of expression variations V̂. In step 3,1311

we estimated the cell state matrix Ĉ(m0) for the held-1312

out control sample by applying Symphony mapping.1313

To achieve this, we used mapQuery function in the1314

R package symphony (v0.1.1) with default parame-1315

ters, setting the held-out sample X(m0) as the query1316

object, and the other samples X(1), . . . ,X(m0−1) as1317

the reference object. In step 4, we predicted the batch-1318

corrected data for the held-out sample with: X̃(m0) =1319

Ĉ(m0)M̂ + (X(m0) − Ĉ(m0)M̂)(I − V̂V̂⊤). In step1320

5, we performed differential expression analysis across1321

cell types using X̃(m0) and computed multiple-testing1322

adjusted P -value for each gene. We also used un-1323

corrected held-out sample X(m0) and performed the1324

same differential expression analysis, again obtaining1325

adjusted p-values for each gene. Wilcoxon signed-1326

rank test was used for DE analysis and Benjamini-1327

Hochberg procedure was used to control the false dis-1328

covery rate. Note that the pre- and post-correction p-1329

values are computed using exactly the same sets of1330

cells, all derived from the same sample. Since they1331

all come from the same sample, the differences be-1332

tween these cells are not influenced by batch effects,1333

and thus, ideally the post-correction p-values should1334

resemble their pre-correction counterparts. We com-1335
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pared the pre- and post-correction adjusted p-values,1336

with a high correlation indicating minimal gene-level1337

distortion.1338

Treatment effect detection and estimation (Figure 4).1339

Details of methods execution. In the type 1 diabetes1340

(T1D) dataset, the 11 healthy individuals served as the1341

control-pool. Similarly, for the immunotherapy trial dataset,1342

the 10 samples collected at baseline (time 0) before treatment1343

served as the control-pool. In the mice radiation data, the1344

Sham-irradiated control mice were designated as the control-1345

pool. Samples from the control-pool were used to estimate1346

the batch variation basis V for CellANOVA, and to build1347

the reference map in Seurat V4 and Symphony. Harmony1348

and Liger integration were performed across all samples to-1349

gether, ignoring the control-treatment design. The detailed1350

data integration procedures for each method were the same1351

as those used in the previous section. After integration, we1352

recovered batch-corrected gene expression measurements for1353

each cell. For CellANOVA, we first extracted the main and1354

treatment effects from the model, and then combined them1355

Ĉ(i)[M̂ + T̂(i)Ŵ⊤] to detect biological signals and evalu-1356

ate performance. Harmony, Seurat V4, and Symphony out-1357

put the cell-specific batch-corrected embeddings and a gene-1358

loading matrix. We recovered batch-corrected measurements1359

for each gene in each cell by multiplying batch-corrected em-1360

beddings with the gene-loading matrix. Liger identified a1361

set of shared- and dataset-specific latent factors (meta-genes)1362

that corresponded to biological or technical signals, and cal-1363

culated meta-gene expression for each cell. We recovered1364

batch-corrected gene expression by multiplying meta-gene1365

expression with the meta-gene loading.1366

Evaluation metrics. We employed the following evalua-1367

tion metrics in Figure 4:1368

1. Out-of-sample nearest-neighbor proportion. This met-1369

ric is used to evaluate the extent of preservation of1370

meaningful biological variation across samples. In the1371

first step, we performed principal component analy-1372

sis on the batch-corrected data and selected the first1373

npc components as the features for the k-nearest neigh-1374

bors algorithm. We set npc to 20 for all methods. In1375

the second step, for each cell, we identified its near-1376

est neighbors among cells from the other batches (that1377

is, if the cell comes from sample i, we exclude all cells1378

from sample i in the nearest neighbor search). We used1379

function NearestNeighbors from Python package1380

scikit-learn (v1.0.2) with default parameters, us-1381

ing those out-of-batch cells as the training set, then1382

the kneighbors function from the same package to1383

predict the k (k = 30) nearest neighbors in the train-1384

ing set for each cell. In the third step, we computed1385

the proportions of these out-of-batch nearest-neighbor1386

cells belonging to each treatment group. R function1387

geom_density from package ggplot2 (v3.4.1)1388

with smoothing bandwidth bw=0.05was used to gen-1389

erate the kernel density plots.1390

2. Differential gene expression analysis (DEG). To per-1391

form differential gene expression analysis between cell1392

types or between conditions, we used Wilcox signed-1393

rank test, implemented in the function wilcox.test1394

from the R Stats (v4.2.2) Package. To ad-1395

just p-values for multiple comparisons, Benjamini &1396

Hochberg procedure was applied using the function1397

p.adjust.1398

3. AUC and ROC. Area Under the Curve (AUC) of the1399

Receiver Operating Characteristic (ROC) curve was1400

used to assess the performance of the marker gene1401

prediction task based on the batch-corrected data pro-1402

duced by different integration methods. For each gene,1403

we performed DEG with batch-corrected data across1404

conditions and assigned an adjusted P -value (as de-1405

scribed above), which was used for marker gene pre-1406

diction. We used marker vs. non-marker in the sim-1407

ulation dataset as the ground truth. The number of1408

genes that were detected as markers and are true dif-1409

ferentially expressed genes (DEGs) is denoted as true1410

positives (TP). The number of genes detected as mark-1411

ers but not true DEGs is referred to as false positives1412

(FP). True positive rate is the proportion of TP among1413

all positive detections. False positive rate is the pro-1414

portion of FP among all positive detections. Functions1415

geom_roc and calc_auc in R package plotROC1416

(v2.3.0) were used to plot ROC curves and compute1417

AUC values, respectively.1418

4. Gene Set Enrichment Analysis (GSEA) (45, 46). To1419

identify biologically relevant gene sets associated with1420

different cell groups, such as cell types or time points,1421

thereby assessing signal preservation after batch cor-1422

rection, we performed Gene Set Enrichment Analysis.1423

In the first step, we conducted a t-test for each gene us-1424

ing batch-corrected data between two cell groups (such1425

as two cell types or two time points). Then, we ranked1426

genes using t statistics. Next, we followed the stan-1427

dard protocol outlined in the tutorial of the Python1428

package GSEApy (v1.0.4), with the ranked gene list1429

as input and all parameters set to default. To mitigate1430

any bias caused by uneven distribution of cells among1431

batches, we subsampled the data to ensure that each1432

batch contained no more than n cells, with n set to 300.1433

The main function we used is prerank from package1434

GSEApy (v1.0.4), which employs permutation tests to1435

determine whether a priori defined sets of genes show1436

statistically significant enrichment at either end of the1437

ranking. MSigDB Hallmark 2020 database was used1438

as the reference gene sets. GSEA plots were gener-1439

ated using gseaplot function from the same Python1440

package.1441

Details of analysis of spatial transcriptomics data for1442

Figure 6d, 6e, and Supplementary Figure 14. Decon-1443

volution for all samples was performed using RCTD using1444

the MULTI setting with the maximum number of cell types1445
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per spot equal to 4. In each spot, cell types that were re-1446

ported to comprise less than 5% of the spot were filtered out1447

and the cell type proportions were renormalized. Gene sets1448

corresponding to specific pathways were pulled the hallmark1449

gene sets from GSEA | MSigDB | Browse Human Gene Sets1450

(gsea-msigdb.org). For each gene set and Visium sample,1451

spot-specific pathway enrichment scores were computed via1452

the ‘AddModuleScore’ function in Seurat.1453

Details of trajectory and pathway activity analysis for1454

Figure 6f.1455

After preprocessing, we first conduct Harmony integra-1456

tion and CellANOVA signal recovery on proximal tubule1457

cells (PT), including three subclusters (PT_S1, PT_S2,1458

PT_S3), as well as injured PT cells (iPT), utilizing both1459

scRNA-seq and snRNA-seq data. Next, we performed1460

Leiden clustering and computed the PAGA graph intro-1461

duced by (47). Then, we recomputed the embedding using1462

PAGA-initialization. We selected PT cell as the root for1463

the computation of diffusion pseudotime (48). In order to1464

calculate TNF-alpha signaling via NF-kB pathway activity1465

for cells along the trajectory, we adopted the methodology1466

described in (49). The gene sets used in this analysis were1467

downloaded from (https://www.gsea-msigdb.1468

org/gsea/msigdb/human/geneset/HALLMARK_1469

TNFA_SIGNALING_VIA_NFKB.html). The main1470

functions for the above analysis are from Python pack-1471

age Scanpy (v1.8.1): tl.paga, tl.draw_graph,1472

tl.dpt, tl.score_genes.1473

Details of simulation model for Supplementary Figure1474

15. A negative binomial distribution was used to gener-1475

ate gene counts ycg based on a gene-and-cell specific mean1476

µcg and a fixed dispersion parameter θ = 0.35. For cell1477

types CT1-CT5, the distribution of the expression mean1478

µcg was the same across control and treatment batches.1479

Specifically, the distribution of means of marker genes was1480

Uniform(2.5,3.5) and the distribution of means of other1481

background genes was Uniform(1,2). For cell type CT6, the1482

distribution of marker gene means in the five control batches1483

was the same as above, while that of marker gene means in1484

two treatment batches was scaled up by an additive factor1485

of 1.5 resulting in µcg ∼ Uniform(4,5). Batch effects were1486

added as a small shift to the gene expression means where1487

the shift were i.i.d. random numbers sampled from a Log-1488

Normal distribution (mean and standard deviation on the log1489

scale to be 0.01 and 0.35, respectively).1490

Computation of batch susceptibility score (BSS).1491

Recall that in the second step of CellANOVA model fit-
ting, we estimate the batch variation basis matrix by per-
forming a singular value decomposition on E0 (defined in
Eq. (6)), which is the regression coefficient matrix in the
control/baseline datasets after demeaning. Then the esti-
mated batch variation matrix V̂ ∈ Rp×kB is composed of
kB leading right singular vectors, where the corresponding
singular values are denoted as s1, . . . ,skB

. We define batch-

susceptibility score (BSS) for gene g as

BSSg = 1
K

K∑
k=1

s2
kV̂2

gk.

where we set K = 5. Intuitively, each column of V̂ can be in-1492

terpreted as a latent “concept” describing the unwanted varia-1493

tion. Each gene has a loading for each latent concept, and the1494

importance of each concept is recorded by its corresponding1495

singular value. Batch susceptibility score (BSS), therefore,1496

measures the susceptibility of each gene to batch effects.1497

Experiments and datasets.1498

Mouse radiation therapy dataset C57BL/6J mice (Jackson1499

Labs, Bar Harbor, ME) were divided into two experimental1500

groups of sham-irradiated control mice (C) and conventional-1501

dose-rate-irradiated mice (SR). Whole abdominal irradiation1502

with standard PRT (0.9 ± 0.08 Gy/s) was delivered as previ-1503

ously described. At days 2, 3.5, 10, and 20 post-irradiation,1504

intestinal segments of two or more mice from each group1505

were harvested, and single cells were isolated and sequenced1506

from the epithelial and lamina propria layers of the organ.1507

The single cells from the two mice were then pooled in their1508

respective fractions, and flow cytometry was used to enrich1509

for ten-thousand live cells from each fraction but not for any1510

cell populations. Single cell emulsions were obtained using1511

the 10x Chromium Controller, and libraries were prepared1512

using the Chromium Single-Cell 3’ Library & Gel Bead Kit1513

v2 (10x Genomics) following the manufacturer’s protocol.1514

Libraries were sequenced on an Illumina NextSeq using a1515

NextSeq 500/550 v2.5 High Output Kit (Illumina).1516

Immunotherapy trial dataset The immunotherapy trial1517

dataset was retrieved from Divij et al. (30) In the original1518

study, Divij et al. (30) isolated PBMC cells from specific pa-1519

tients and sorted them into live CD8+ cells using a BD FACs1520

Aria II sorter. The sorted cells were then encapsulated into1521

GEMs using a 10x Chromium Controller and transformed1522

into libraries following the Chromium Next GEM Single Cell1523

5’ Reagent Kits v2 (Dual Index) Protocol. Subsequently,1524

the libraries were sequenced on a NovaSeq 6000 platform.1525

The obtained sequencing data were processed using the Cell-1526

Ranger pipeline v5 from 10x Genomics, with BCL files be-1527

ing converted into FASTQ format and aligned to the human1528

genome (GRCh38) to produce count matrices. Doublets were1529

then identified with R package DoubletFinder. Cell type1530

annotations were generated using function SingleR from1531

R package SingleR (v1.10.0). A collection of 114 bulk1532

RNA-seq samples of sorted immune cell populations from1533

GSE107011 (50) were used as the reference to label CD8 T1534

cells.1535

Type 1 diabetes study dataset The scRNA-seq data of the1536

type 1 diabetes study was retrieved from Fasolino et al. (29).1537

Doublets removal was performed by Fasolino et al. (29) using1538

DoubletFinder. Cell type annotations were shared by the1539

authors of (29). They utilized the R package Garnett for1540
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initial cell classification and validated the cell type assign-1541

ments by integration and label transfer. We randomly sub-1542

sampled 30,000 cells for our study.1543

Human kidney multi-omics atlas dataset The single-cell1544

RNA-seq, single-nuclei RNA-seq, and VISIUM data we1545

analyzed in Figure 6 are retrieved from Abedini et al.1546

(31). Cell type labels and disease group information are1547

provided by the original study. For independent valida-1548

tion of our findings using Abedini et al.’s data, we also1549

downloaded human kidney single-cell RNA-seq data by1550

Lake et al.(36) from the Kidney Precision Medicine Project1551

(KPMP). We subseted CKD and Healthy donors from1552

data generated by KPMP (https://www.kpmp.org.):1553

DK133081, DK133091, DK133092,DK133093, DK133095,1554

DK1330971, DK114866, DK114908, DK133090,1555

DK133113,DK133766, DK133768, DK114907, DK114920,1556

DK114923, DK114933, DK114886. Data downloaded on1557

[June 15, 2023].1558
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